On the Importance of Local-field Corrections for Polarizable Particles on a Finite Lattice: Application to the Discrete Dipole Approximation

نویسندگان

  • Adel Rahmani
  • Patrick C. Chaumet
  • Garnett W. Bryant
چکیده

We investigate the influence of local-field effects on the electromagnetic response of a collection of dipoles. We derive the local-field corrected static polarizability for a collection of dipoles in the case of a scatterer with uniform depolarization. We then use this correction within the discrete dipole approximation to study the scattering of an electromagnetic wave by a spherical particle. The local-field correction leads to a new formulation of the discrete dipole approximation that is exact in the long-wavelength limit and more accurate at finite frequencies. We also discuss the feasibility of a generalization of the local-field correction to arbitrary scatterers. Subject headings: dust, extinction — scattering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Analysis of the Optical Properties of Gold Nanoparticles Using DDA Approximation

   This article describes a study, using numerical simulation, of the optical properties of nano particles as a function of their size. Many methods introduced to simulate and calculate the interaction of light and particle, such as Mie analysis, boundary element and finite element methods. The Discrete Dipole Approximation (DDA), wherein a target geometry is modeled as a ...

متن کامل

Analyzing the Optical Properties and Peak Behavior Due to Plasmon Resonance of Silver Cubic-Shape Nanostructures by Means of Discrete Dipole Approximation

In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, waveleng...

متن کامل

Calculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method

In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...

متن کامل

A hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure

This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...

متن کامل

User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10)

DDSCAT.5a is a freely available software package which applies the “discrete dipole approximation” (DDA) to calculate scattering and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive index. The DDA approximates the target by an array of polarizable points. DDSCAT.5a requires that these polarizable points be located on a cubic lattice. DDSCAT.5a10 al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004